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ABSTRACT: This paper is concerned with the analysis of synchronous,

special purpose, multiple-processor systems, including, e.g., systolic arrays.

There have been some results on this problem, especially by Melhem and

Rheinboldt (1984). Our approach is different, combining ideas well known

in linear system theory with certain graph-theoretical concepts from com-

puter science.

A by-product of our approach to the analysis problem is a rigorous

characterization of the notion of equivalence between iterative algorithms.
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1 Introduction

In this paper we are concerned with the analysis problem of determining

the algorithm executed by a given synchronous, special-purpose, multiple-

processor array. The problem arises because such arrays (or architectures)

are often designed heuristically. Several formulations have been suggested

in the computer science literature to solve a simpler problem called ver-

ification, in which one Wants to check that a given algorithm is indeed

implemented by the architecture.

In the analysis problem we are given the topology of the network, the

function performed by each processor (including timing information), and

the input data streams. We want to determine the algorithm performed by

the array, and the iteration interval (i.e., the time between two consecutive

input samples).

Previous work in the area is due to H.T. Kung and C.E. Leiserson (1979);

M. Chen and C. Mead (1982); H. Lev-Ari (1983); H.T. Kung and W.T. Lin

(1983); C.J. Kuo, B. Levy, and B. Musicus (1984); E. Tid6n (1984); and,

finally, R. Melhem and W.C. Rheinboldt (1984), whose work is the most

general because it can determine, in some cases, the algorithm implemented

by the array, instead of being limited to verifying the algorithm given. In

general, these methods tend to be somewhat involved and are applicable

%1 "
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only to a limited class of systems. The main contribution of this paper is a

new approach and a new solution to the analysis problem, based on ideas

from system theory.

We view the analysis problem as part of a cycle: starting from an al-

gorithm, we design (or synthesize) a physical circuit; then we complete the

cycle (i.e., solve the analysis problem) by trying to recover the original al-

gorithm (or one that it is equivalent to it under some criterion). The first

step in this cycle is to represent a given iterative algorithm, i.e., a set of

relations between sequences of data, by a so-called si gnal flow graph (SFG),

which shows interconnections between blocks that perform ideal mathemat-

ical operations (i.e., take no time to compute). The next step in the cycle

is to modify the chosen SFG to obtain a logical circuit (i.e., a hardware

* implementation with physical modules that compute the same functions as

the blocks in the SFG but in nonzero time and with some explicit delays).

For the analysis problem we have to reverse the above path by modifying

the logical circuit to obtain a SFG, and thereby an associated algorithm,

equivalent (in some sense) to the one we started with.

Therefore to solve the analysis problem it is helpful to understand the

design phase, which is our first object of attention in this section. The

* whole cycle will be explored in some detail using a simple example from
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linear system theory; in fact this example was the one that helped us to

understand the analysis problem in a context more familiar to us, since

for linear systems the design and analysis problems are well understood

and there are well established techniques, such as z-transforms and block-

diagram-manipulations, to solve them (see, e.g., Kailath 1980).

1.1 Algorithms and SFGs

Consider the iterative expression

y(k) = bu(k- 1)-ay(k-l)+b2 u(k-2)-a 2 y(k-2)+b 3u(k-3)-a 3y(k-3)

(1)
which describes the relation between two sequences, u(*) and y(.), that

constitute a so-called linear filter. This filter produces a sequence of output

values {y(k)}, given, at each k, certain past values of y(.) and of an input

sequence u(*). Representations of this algorithm using simple building

-blocks-adders, multipliers, and separators (or index-shifting blocks)-can

be set up in many ways (see, e.g, Kailath, 1980, Ch. 2). One of these, the

so-called observer form, is shown as a signal flow graph (SFG) in Figure 1,

where we have used a convention (arising from the use of what are called

z-transforms) common in system theory of labeling the separator blocks by

the symbol z - '.

3
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Figure 1: Observer canonical form (modified from Kailath (1980), p. 43).

We define nodes {vO, vI, v 2 , v3} as shown: one at the input point, and the

others at the outputs of the z-1 blocks.
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Any signal-flow-graph is a network of connected block.. The intercon-

necting wires propagate sequences of data elements, which we shall call

variables. The points at which variables appear will be called nodes. Thus,

for instance, the variable z1 (k) denotes the sequence of data elements that

appears (for k = 0, 1,...) at the output (i.e., at the node v j ) of the linear fil-

ter in Figure 1. The processors (=blocks) of a SFG transform one or several

input variables into a single output variable. In general, this transforma-

tion need not be linear. The set of all variables and all the transformations

determined by the processors constitutes the algorithm performed by the

SFG.

Now, with the important convention that arithmetic operations are in-

stantaneous ( i.e., the input and output quantities have the same indices),

while the separators (or z-' blocks) shift the indices by unity, we can write

the following (so-called "state" 1) equations

'The values {zt(k),z 2 (k),zs(k)} describe the "state" of the system at time k, in the

sense that knowing them and {u(1), I > k} we can compute {y(!), I > k) irrespective of

the prior values of the z,(9), i.e., of {zl(j),X2 (j, z(k),j < k}.

5"5
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x(k) =b, u(k -1)- a,x, (k -1) + X2(k -1)

X2(k) = b2u(k - 1) - a2X1(k - 1) + z3(k - 1)
(2)

X3 (k) = b3u(k - 1) - a3x1(k - 1)

y(k) = x,(k)

Notice that these state equations actually represent an aggregated SFG

corresponding to the modules described by broken lines in Figure 1. Con-

versely, it is easy to see how to draw this aggregated SFG from the equa-

tions (2).

To summarize the above discussion, we can say that generally the first

step in obtaining a physical implementation is to start with an input-output

description and then to convert it, perhaps via the intermediate step of

constructing some (aggregated) SFG representation, into an iterative algo-

rithm, which is a set of equations of the form

x.(k) = f, {x,(k- S11), X2 (k- 2 1),...,1(k- s. 1 )}

X 2 (k) = f2 { x,(k - s12), 2(k - s22),..., .Ck- 2))

x.(k) =f. {xl - sI.),X2Ck- S2.),.Xn(k- s..))

where k is the (possibly multidimensional) index of iteration, and s,, are

known as the index displacements. We emphasize that this conversion pro-

6



cedure is highly nonunique: there are many algorithms that can imple-

ment a given input-output map. However, there is a one-to-one correspon-

dence between equations (3) and the corresponding (aggregated) signal-flow

graph.

1.2 Logical circuits

SFGs are not truly "physical" implementations of mathematical algorithms

such as (2) or (3), because in any physical hardware implementation, the

arithmetic operations will not be instantaneous. One way to accommodate

these physical constraints (and to interpret the SFG as a physical system) is

by taking the iteration interval (i.e., the physical time separation between

sequence elements) to be very large, so that the arithmetic operations in

each computing module will all be completed before the next iteration

begins, i.e., before the next data sample is entered into the system. A

more efficient procedure, likely to result in smaller iteration intervals, is

to determine a "schedule" of the times at which each operation should be

performed, as explained next.

We shall confine ourselves to digital implementations, in which we have

an underlying clock, whose period will be taken as the basic time unit. Then

the time required for additions and multiplications (or other arithmetic

7
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I operations) will be measured as integral multiples of clock cycles. We shall

not concern ourselves with the details of what happens within any particular

clock cycle.

The main goal of the scheduling procedure is to determine an appro-

priate Iteration interval, i.e., the physical time (measured in clock cycles)

between two consecutive data at any point in the system (this will be the

same at all points in a synchronous system), and any additional delays

required, called shimming delays, that may have to be added to the pro-

cessing and transmission delays of the system to ensure that the proper

elements in the various sequences are interacting correctly.

Several algorithms for scheduling have been developed. Here we briefly

describe the ideas of Jagadish et at., 1985 (see also Jagadish, 1985, and

Rao, 1985). Figure 2(a) shows the practical modules to implement the

observer canonical form; we have assumed that multiplication (and data

transfer) takes 7 clock cycles, addition (and transfer) take 3 clock cycles.

We shall also assume that a pure transfer of data along an interconnecting

wire takes 1 clock cycle. The z-' block is a conceptual tool used to express

the shifting between elements of sequences. We emphasize that such in-

dex shifts must be clearly distinguished from physical time displacements;

comparison of figures 1 and 3 (to be derived) will illustrate this point.
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Figure 2: Computing the schedule for the observer canonical form: (a)

timing for modules, (b) computing the schedule.

|* 9

l 
'7

C "."'"- -"""" -,- -"- ." " "."-"' ' .'."""."". '.' "'. -'-". ' " ."":". "'-""- ."- "."- .'''-,: ''" "'-(c.- - '



Figure 2(b) shows how a schedule can be computed in our example.

First, break the circuit at the z-' blocks. Second, assign to the input the

time 0; keep a running tab of the delays in a path to a node or to a break

J.in the circuit. We have assigned the time 1 to the output as follows: the

input data arrives at the third adder at time 9; therefore, the other inputs

to this adder must be available at time 9; working backwards we find that

the input to the -a, gain must be available at time 2, thus the output

of the global system must be ready at time 1. We can now compute the

times at the outputs of gains -a 2 and -a 3 , which turn out to be 10 and 11,

respectively. 2

Third, compute the difference in values at the two sides of the breaks

in the circuit: we have 14 - 10 =4,13 - 9 4, and 12 - 1 11. The

largest of these differences will define an appropriate iteration interval, 6

in our example 6 = 11. It must then be clear that we must add some so-

called shimming delays of values 4 and 2 to the outputs of gains b3 and b2

2 In grTaph theoretical terms what we have done so far is to solve a single source, longest

path problem for the SFG. The longest path to a node clearly determines the time

at which the node can be 'scheduled.' To be precise, certain preliminary separator

transformations have to be carried out in order to make the single-source largest paths

problem meaningful; in particular, we have to ensure that when the separators are

broken we have an acyclic graph.

10
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Figure 3: Logical circuit for the observer canonical form.

to ensure that all the inputs to each adder are present at the same time

(11 for the far left adder, and 10 for the adder in 4'he middle). Figure 3

* shows these shimming delays as thin black blocks. Now close the gap at

the breaks as follows: when the time difference at the gap is equal to the

iteration interval, close the gap without any extra delay; otherwise, close

% the gap with a shimming delay equal to the iteration interval minus the

time difference in that gap.

A physical implementation of the observer canonical form is shown in

Figure 3, in which the blocks represent hardware components with a corn-

putational delay as shown in Figure 2(a), and with additional (shimming)
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delays whose value (in number of clock cycles) is indicated next to them.

Digital designers usually call such a figure a logical (circuit) diagram.3 It

should be noted that the scheduling procedure is highly nonunique (see Ja-

gadish, 1985, and Rao, 1985) and therefore several different logical circuit

diagrams can be associated with a given SFG. We shall elaborate on this

nonuniqueness in the following subsection.

1.3 Logical graphs and algorithm graphs

For many purposes, especially timing analysis, it is convenient to redraw

the logical circuit diagram as what we shall call a logical graph G, see

Figure 4. To draw G, we put down a vertex of the graph for each node

of the logical circuit, and connect the vertices with edges that represent

the directed paths between the nodes of the logical circuit. With each

edge we associate a weight corresponding to the total computational and

propagation delay for that path. For example, from v2 to v1 we have an

edge with weight 3, a self loop from v1 to itself with weight 1 + 7 + 3 = 11,

a loop from v1 to v2 with weight 1 +1+7+3+7= 19, and soon. With

each vertex v,, we associate a sequence {x,}. For example, for the observer

3The adjective 'Ioical| arises fromn the fact that the hardware is based on so-called

',gical components obeying the rules of Boolean logic (algebra).

12

. .



. _ ,, . : 9,. , ..m. -, _. , .q , ,. . t.,. . _ .. . .. . .. . _ .. - _ -,w- . -o . . . . . . . . - - ..
o

- . -

form we can write the function performed at each vertex as follows

xi() = blu() - aizi) + X2()

.e.X Z() = b2uO - a2XIO) + XjG(4". (4)
x3() = b3u() - a.3x,()

y() = X10.

Note that we cannot write directly from the logical graph G the actual

index dependences as we did in eq. (2) from the SFG. Finding these index

dependencies (i.e., the index displacements si in (3)) and the iteration

interval comprises the analysis problem.

Algorithm graphs

To facilitate the reconstruction of an iterative algorithm from a logical

graph G of some physical implementation, we have to obtain a represen-

tation of iterative algorithms that is similar in form to the logical graph.

For this purpose we introduce a so called algorithm graph G*: this, like G,

has a vertex for each variable in the algorithm, and its edges represent the

index dependencies, i.e., the weight of the directed edge connecting vi (the

vertex representing xj()) to vi equals the index displacement sqi. Thus, the

algorithm graph is a precise image of the iterative algorithm (3), i.e., there

exists a one-to-one correspondence between iterative algorithms and their

graphs. The difference between the algorithm graph G* and the SFG is

13
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that in G*, we focus only on the index dependencies ignoring the details

of the actual functional computations. It is the determination of a correct

set of index dependencies from the timing information in the logical graph

that is the key to the solution of the analysis problem.

Relating G and G*

The logical graph G and the algorithm graph G* are closely related.

Obviously, G and G* have the same topology; the only difference is that

in G* the edge weights represent the number of separators in the path while

in G they represent physical delay. Moreover, there is a simple relation

between the index displacement sii (=number of separators) associated

with an edge in G* and the physical delay dii associated with an edge in

G. To make this relation explicit we need to analyze the way synchronous

systems work.

In synchronous systems the time between two consecutive elements in

* . any sequence is constant (and equal to the iteration interval, 6). If in

addition we assume that such systems are time-invariant, as we do in the

logical graphs, all the computations (at the vertices) involve data arriving at

some multiple of the iteration interval. Consider, for example, the graph G

for the observer form (Figure 4). Apply the first element, u(1), of an input

sequence u(.) at time A0  0; by definition, the rest of the elements will

14
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be generated every 6 clock cycles. Let us denote by A, the time instant at

which the vertex vi generates the output xi(1).

Recall that d;, (resp. sii) is the physical delay in the logical graph G

(resp. the index displacement in the algorithm graph G*) along a directed

path connecting the vertex vi to the vertex vi . Since vi generates zi(1) at

time Aj, zx(1) arrives at vertex vi at time Ai + d i . However, we cannot

equate A to A, + 6i, because A, will depend upon the number of separators

in the path from vi to vi, which in turn will fix the actual iteration in which

the input z,(1) is operated on at vertex v i . In our case, the path from vi

to vi has si, separators and therefore, the vertex vi will associate the input

x;(1) with the (1 + sii)th iteration rather than with the first iteration.

Consequently, vi will generate zi(i) at time A, =_ Ai + dii - sijb where 6

denotes the iteration interval. It follows that, for every path (vi, v,),

d,= (Ai - A)+ S (5)

This is the basic equation; all logical graphs G that implement a given

algorithm graph G* satisfy this condition.

After this discussion, the analysis problem can now be restated as fol-

lows: given a logic graph G, find an algorithm graph G* and a set of A,4

,Only the A, associated with the input vertices are known apriori.
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that satisfy (5).

1.4 An analysis procedure

.1* We now present an analysis procedure that constructs nonnegative s1, and

a set of A, for a given logical graph G. First we form a Tooted tree consisting

4. of the shortest paths from the input vertex vo to the remaining vertices of

G. Next we set s,, = 0 for the edges contained in the rooted tree. This

determines A, for all vertices and we can use equation (5) to compute the

index displacements 9j, for the edges that are not in the rooted tree.

As an example, in the observer form of Figure 4 the first input will

reach vertex V2 from vo at time A2 = 20 (minimum-delay path). Along the

path that goes through V3 , however, this first input will not reach V2 Until

time 31 (i.e., 21 + 10). But at time 31, we shall already have at vertex V2

the second datum, X2(2), that traveled along the shortest path. In other

words, X2 (2) is a function of u(2) and x,3(1). Hence, we have to put onez-

J/ block in the longer path. Figure 6 shows the graph G* with the number of

separators in each edge; from this graph we can easily write the following

state equations

17
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Figure 6: Another graph G* for observer canonical form.

X (k) = b2 u(k) - a2X1 (k - 1) + z 1(k - 1) (6)

x3 (k) = b3u(k) - aax,(k - 1).

When the logical graph has several input vertices we shall need to extend

the logical graph by introducing an auxiliary root, as described in Section 3.

We now observe that the graphs G* in Figures 6 and 5 are different, and

consequently that the resulting algorithms (eqs. (2) and (6)) are apparently

different. However, the difference in the algorithms in eqs. (2) and (6)

amounts only to shifts in the indices (we can change the indices for the

!,1
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sequence u(*) in eq. (6) from k to k- 1 and obtain eq. (2)) and therefore

both algorithms are equivalent in the sense that they determine the same

set of recursions.

This observation holds for every algorithm graph G" and for arbitrary

shifts in the indices of data sequences. In other words, if we redefine .i(k)Sz(k-c,) and replace x(-) by i(.) in the algorithm graph, the computations

remain unchanged, even though the index displacements become modified,

i.e., si, -- sji+cj-c,. We shall say that two algorithm graphs are equivalent

if they are isomorphic (in the graph theoretic sense) and if their index

displacement can be related by a set of shifts c,, as described above.

The above discussion has been informal. We shall present and prove the

general procedure to obtain the algorithm graph G* in Section 3. It is based

on determining the shortest-path tree (minimum delay), which is consistent

with the *emark in footnote 2 that the inverse problem (viz. the schedul-

ing problem) involves solving a single-source longest-paths problem). The

shortest path procedure guarantees that the number of separators we obtain

in the links of the tree is integral and positive.

19

I
f

r..'--',-'.",,.'f,' ,P,,.", ,,'' "'' ''+" ' •_"".....................................................m....m.mm..mmmm..mmmmmmm.'i



d W .

2 Formulation of the Analysis Problem

In this section we discuss in more detail some of the key concepts presented

in Section 1. The first subsection is dedicated to presenting a model for

synchronous, special-purpose systems. In the second subsection we refine

the concept of iteration interval. In the third subsection, we formalize the

concept of equivalence for a pair of SFGs that have the same topology

V.- and functionality, but that differ in the weights on their edges (different.

distribution of separators).

2.1 Logical Graphs

As it is well known in circuit theory (see, e.g., Rohrer, 1970), physical cir-

4 cuits can be modeled by a directed graph. For instance, Leiserson and Saxe

(1981) modeled circuits as a graph in which the vertices are the computing

elements and the edges the interconnections between these elements. The

edges have weights associated with them, representing the number of shift

registers present in the interconnection. Moreover, the vertices have also

weights associated with them, representing the computational delay.

To model a synchronous circuit, Leiserson, Rose, and Saxe (1983) im-

pose non-negativity constraints on the weights associated with the edges

and vertices. In addition they require that, in any directed cycle in the

20



graph, the sum of the edge weights must be positive. The need for such

a constraint for digital circuits was shown by Crochiere and Oppenheirn

(1975); see also previous work by Karp and Miller (1966).

Below we model a synchronous, special-purpose system as a finite, di-

rected graph. For our needs, we lump the propagation and computation

time in a weight associated with the edges, which represent the interconnec-

tions between variables or sequences (which are the vertices of the graph).

We impose positivity constraints on the edge weights as in the previous

models. To describe synchronism, we associate a data sequence to each

vertex and impose the constraint that the time between two consecutive

data in all sequences must be a constant, which we call iteration interval.

Definition I A synchronous, special-purpose system is a finite, directed

graph G = (V, E,x, d,5b), in which

* V is the set of vertices of the graph. They represent the sequences (or

variables) in the circuit.

o There is at least one vertex in V (called a source) with no incoming
edges.

o x is the set of sequences {xi} associated with the vertices (One per
vertex)

o E is the set of directed edges, which represent the dependence among
the variables so that for vertex vi, x1(k) is a function (invariant in k)
of the sequences corresponding to the vertices that have edges incoming
into vj.
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.d is the set of positive weights (delays) associated with the edges (o-rze

per edge), which represent the processing and propagation delay co--
responding to that edge.

* . 6 is a positive constant (called iteration interval) that represents the

a' time between two consecutive elements in the sequence associated with

any vertex vi.

Remarkcs:

1. The inputs of the system are the sequences associated with the source

vertices. The outputs are the sequences corresponding to sinks in the

graph (i.e., vertices with no outgoing edges); in addition, we can

designate the sequence associated with any vertex as an output of

the system. When we want to show clearly that we are referring to

an input or output, we shall denote the corresponding sequences with

the letters u and y, respectively. A subindex indicates the vertex

we are referencing; an integer in parenthesis designates a particular

element in the sequence. For example, x3 (7) is the seventh element

in the sequence generated at vertex V3.

2. In our model, the delays, di,, and the iteration interval, 6, are integer

multiples of the clock period.

3. We use the convention of assigning the same index k I to the first

element generated at each of the vertices vi.

22



4. Till we state the contrary, we assume that every vertex in G can be

reached by a directed path from at least one input.

2o2 The Iteration Intervals

There are several possible notions of iteration interval for a synchronous

system G. The first one, 6, is the time between two data in the input

streams. As we shall see below, there might be several possible 6's tha.t

work (are valid) in a system; we establish the conditions for validity in

Theorem I below.

Under certain conditions (see Jover and Kailath, 1984), a system can

perform an algorithm on different sets of data by inteileaving data from

the different sets to form the input sequences for the system. Naturally, I.n

that case the throughput increases to a value given by the number of sets

interleaved times the throughput without interleaving.

The second type of iteration interval will be denoted 61 and refers to

the time between data in a sequence such that the system is operating on

one sequence, not on interleaved sequences.

There exists a third iteration interval, called the intrinsic iteration in-

terval, 6j,,j, which corresponds to the minimum timne interval before we can

introduce anothr datumn to the same elemenary module. Note that 6,,t
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can be the clock period or a multiple of it depending on the implementation.

In a practical system we let 65,,t be the largest of the intrinsic iteration inter-

vals of any elementary module. Obviously, a practical system must satisfy

5 > 6, t and 6jj > clock period, since we cannot introduce data faster than

the clock period of a system. Finally, note that 6i,t is technology and im-

plementation dependent, while 6 depends only on the topology and delays

in the graph G.

Below we present some theorems concerning the iteration intervals. We

say that a graph G has a valid 5 when a given value 6 for the iteration

interval satisfies the definition of a synchronous system (and, of course,

6 > 5w,). The following theorem provides a method to test if a graph C

has a valid 5, i.e., an iteration interval that makes the appropriate elements

of the sequences to meet.

Theorem 1 1. A given value 6 is a valid iteration interval for a syn-

chronous, special-purpose system G = (V, E, x, d, 6) if, and only if,

the delays on all the paths between any two vertices are congruent5

mod 6 and the delays for self-loops are a multiple of 6.

'Two numbers Q2 and 112 are defined to be congruent modulo 6 if their difference is a

II1ltipl of 6.
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2. 61/8 represents the number of sequences interleaved, where 61 is the

largest valid iteration interval.

Proof:

1. Consider one vertex vi, and assume that there are, say, r paths be-

tween this vertex and another vertex vi . Call the delays on the paths

d,... d,. If members of the sequence xi are sent every 6 units of time

starting at time t = 0, then the member zi(k) will reach vi at the fol-

lowing times t1 = k6 + d, t2 =- k6 + d2 and so forth until t, = k6 + d,.

Since the delays are congruent modulo 6, their difference is a multiple

of 6. Thus the differences between any times {t,... t,} is also a mul-

tiple of 6, which proves that the iteration interval for the sequence

in vi is also 6. The same argument applies for self-loops. Since our

discussion was for any vi and vi, our results are general for any two

vertices. Finally, note that if we were given the fact that the 6 is valid

(i.e., constant for the sequence at any vertex), then the differences

in {t,... t,} are multiples of 6, which implies that the differences in

the delays {d,... d,} are also a multiple of 6 and therefore congruent

modulo 6. This completes the proof of (1).

2. Assume a system with only one pair of vertices connected by two par-

allel edges in the same direction. For such a system, it is clear that 61
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is given by the difference in the delays of both paths. Choosing an

iteration interval that is a submultiple of 61 will result in indepen-

dent sequences being processed (i.e., interleaving). The number of

sequences being 61/6 as it is trivial to check.

For a general system, if there is a pair of vertices for which the itera-

tion interval is not the largest valid, then there will be interleaving for

that pair and, therefore, this value of iteration interval will not be 61.

Thus, 81 has to be the largest valid iteration interval, which proves the

first property. Similarly, for the number of sequences interleaved in a

pair of vertices will be given by the quotient between 61 and the value

that makes this pair congruent. Obviously, for the general system,

the largest of this quotients is the number of sequences interleaved in

the whole system.

2.3 Algorithm Graphs

Definition 2 An algorithm graph is a finite directed graph G = (V", E, x, s)

in which V, E, x are the, same as in Definition 1, and s is the set of pos-

itive weights (separators) associated with the edges (one per edge), which
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represent the index displacement corresponding to that edge.

Theorem 2 A synchronous system G = (V, E, z, d, 6) is an implementa-

tion of an algorithm graph G* = (1', E, x, s) if, and only if, there exists a set

of positive constants {)q} (one per vertex) such that for every v,, vi E V,

Aj: =A +di,- sj6

Proof: See the argument used to establish eq. (5) 0

The constants {Ai} determine a schedule for G in the sense that xi(k)

is generated at the time-instant Ai + (k - 1)6.

Definition 3 Two algorithm graphs G* = (V, E, x, s.) and G* = (V, E, x, sb)

(and their corresponding algorithms) are said to be equivalent if there exists

a set of constants {c,} (one per vertex) such that

(s), = (s), + ci - c, (7)

Figure 7 depicts two equivalent graphs G* for the aggregated observer

form introduced in Section 1. The main point is that two algorithms can

be equivalent even if the indices do not seem to match. The important

fact is to have the indices for the same sequence related in the same way.

Indices between different sequences can always be matched by selecting an

appropriate origin for the different indexing variables.
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3 An Analysis Procedure

In this section we describe our analysis procedure and provide a rigorous

proof of its validity.

Procedure 1 Given a logical graph G = (V, E, x, d, 6) we want to deter-

mine an algorithm graph G* = (V, E, x, s), such that G is an implemen-

tation of G*. For each input sequence, {ui}, we are given the time A, at

which the first element of the sequence is entered. The procedure consists

of the following steps:

1. Extend the graph G by adding a vertex vo with an edge from vo to eac.':

of the source vertices v,, and with weight A,. Call this graph Ge,.

2. Form a spanning tree with the minimum-delay path from vo to every

vertex in G,,,. For every vertex vi let Ai = A, + dii where di, is tLk
%"

delay on the edge that connects to vi its closest vertex, v,.
.

3. For each link eii in the tree formed above compute

d* = A, - A, + d,,.

For each self-loop with weight di, assign

d'= dii.
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4,.

Figure 8: Shortest-path tree for observer form.

4. Compute 6, = gcd{d*, Vi, j}.

5. The number of sequences interleaved is given by 61/6. If (61/6) V Z +

then the 3 given is not valid for the graph G.

6. Associate a weight sj > 0 to each link e,, in the tree formed in step

si =d*,/.

Associate zero weight, s = 0, to the edges in the tree.

As a simple example recall the observer form of Section 1. Notice that

an extension (step 1) is not required, because A0 = 0; the corresponding

shortest-path tree and the resulting index displacement are described in

Figure 8.

Remarks:

,: 30
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1. In addition to the logical graph G, we are given the time instants Ai

at which the first element from each of the input sequences {u,} is en-

tered. If these time instants were not given, the procedure would still

work, but information on the relative shift between input sequences

could not be recovered. (As we noted in Section 2.3 the SFG recov-

ered will still be equivalent to the one used in the design of the logical

graph G.)

2. If the iteration interval 6 is not given, our procedure still will work

and will compute a valid 6 for that system, under the assumption

that there is no interleaving of input sequences. In this case there is

no need to perform step 5 of the procedure.

3. There are several algorithms for implementing step 2 of the procedure

(shortest-path tree), such as those in Dantzig (1975). For a compre-

hensive presentation of these algorithms see, e.g., Even (1979).

We now turn to establish the validity of our analysis procedure.

Proof of the Analysis Procedure

We establish Procedure 1 in three stages. First, to prove steps 1 through 5

of thle procedure we prove that the procedure determines whether the 6
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given is valid and that it computes 61 correctly. Second, we prove step 6

of the procedure, i.e., that the number of states assigned to a link will be

nonnegative. Third, we prove that the procedure recovers an algorithm that

is equivalent to the original algorithm used in generating the synchronous

system.

Computing a valid 6

In this section we prove that steps 1-5 of Procedure 1 are correct. We will

prove first that a valid 6 is a divisor of the delays {d* Vi, j}. Every time

we add a link eq1 from v, to vi, we are creating two paths to reach vi (see

Figure 9); one of the paths has delay A + d i and the other Ai. Applying

Theorem 1 we see that these delays must be congruent modulo 6; therefore,

their difference (which we call d!.) must be a multiple of 6.

To prove that 61 = gcd{d i Vij} just consider that any valid 6 has to

be a divisor of {d~i}. By Theorem 1, 61 must be the largest valid 6, which

completes our proof. 1"

Determining the states

In this section we prove that step 6 of Procedure 1 generates index dis-

placements that are positive and integer.
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To prove that sj > 0 note that si will be nonnegative if and only if

d> 0. Since we have formed a shortest-path tree from v0 , it means (again

see Figure 9) that

Ai + d i _ Ai

and, therefore,

d= A, - Ai + d i > 0.

Thus s i > 0. Finally, since 61 is a divisor of every d',, it is obvious

that sq,, as computed in Procedure 1, will also be integer. D

Recovering the equations

In this section we prove that Procedure I recovers an algorithm G" that is

equivalent to the equations used in the design of the logical graph G.

The algorithm G" recovered by our procedure satisfies the equation

Ai  A, + dij - sij, while the original algorithm G*, used to design the

logical circuit G, satisfies the equation A= A, + dij - sjj. Assuming all

graphs in consideration have been extended, we can assume for the root

vertex v0) that Ao 0 Ao. Consequently,

A - A, (Sio - sio)6

so that we can replace A, by A; + c, 3 , where c, s: o - s;o, and we conclude
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that

"Zji5 = i - Ai + dii = , - A i + dii + (ci - Cj)5 (sq + c, - ci)5

which establishes the equivalence between G* and iG*

This completes the proof that our procedure is indeed correct in each

of the steps and that it recover- an algorithm equivalent to the one used in

the design of the system.
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4 Concluding Remarks

We modeled a synchronous, specal-purpose system as a directed graph in

which the functions performed by the processors were associated to the

vertices, and the computational and propagation delays to the edges. We

discussed extensively the motivation for viewing the analysis problem as a

conversion from this graph into a signal flow graph, and we developed a

procedure that allowed us to transform this graph into a signal flow graph

with the same topology as the original graph, but in which the weights in

the edges correspond to the states of the system. This conversion 's the

reverse step to the design process. Once we have the states of the system, we

can write by inspection state-like equations, and, therefore, the algorithm

-I implemented by the system. Our procedure recovers an algorithm that is

"equivalent" to the one the system was designed to implement. We formally

proved our procedure and gave several examples of how to use it.

- Our analysis can be extended to systems in which not all vertices are

reachable from at least one source, thereby removing the constraint imposed

by Remark 4 to Definition 1 (in Sectin 2.1). It can be shown that the

* logical graph of such systems always contain autonomous subgraphs that

are not reachable from the rest of the graph. In order to apply our analysis

procedure we need first to add edges from the root vo to a vertex (which is

4. 36



not a sink) in every unreachable subgraph. This modification makes every

vertex reachable from the root v0 so that our analysis procedure can be

applied. A detailed description and justification of this technique can be

found in Jover (1985).

Finally, it should be noticed that our procedure can be significantly

simplified when the system to be analyzed is a systolic array, i.e., a regular

network of identical modules. It can be shown, in fact, that the analysis of

such systems involves the application of our procedure to a single module.

More details can be found in Jover (1985).
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Appendix: EXAMPLES

In this appendix we illustrate our procedure by analyzing the arrays previ-

ously verified or analyzed in the literature. Most of the authors limit their

efforts to the Kung-Leiserson matrix-multiplication array; the most com-

prehensive effort was made by Melhem and Rheinboldt (1984), who studied

three additional examples: reverse convolution, sorting, and back substi-

tution. We analyze these three examples below. Note that the examples

studied by the previous authors always assume that all the operations take

one unit of time to perform (in our language, that the computational de-

lays are unity for all the edges of G); to make a different assumption might

complicate their methods. In contrast, we can assign "realistic" values for

all the computational delays, since this does not complcate our analysis

procedure at all.

We also analyze the Heller-Ipsen(1983) array for QR factorization, which

was studied by Tid~n (1984), as an example of a complex system with reg-

ular topology.

Forward Convolution

This array was developed by Kung and Leiserson (1979). Figure 10 depicts

the array, while the logical graph G is shown in Figure 11. The input
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Figure 10: System that performs convolution: (a) network, (b) module and

timing.

sequences are

,= {U (0), U,(1), U,(2),...} (8)

U8 = {O,,0,...} (9)

We assume that , = 0 and that we know that A8 = 7, and the iteration

interval is given as 2.

Following steps 1-2 of the analysis procedure, we determine the shortest

"path between v0 and the rest of the vertices. In practice, there is no need to

write v, since it is enough to write the A's to keep track of the shortest path

as the A's correspond to the shortest distance from v0 to a given vertex.

Figure 12 shows one choice for the shortest-path tree. (Note that there

is another choice for the shortest-path tree: take e8,7 as part of the tree

and e17 as a link.)
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- in dashed lines).
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r,

In steps 3-6 of the analysis procedure we compute d76 = ds = 2 and

61 = gcd{2} = 2; therefore there is no interleaving of sequences (6,/6 = 1).

Furthermore, the number of states in each of the links is given by s 76 =

S65 = 1 and S87 = 0.

Finally, we can write the equations directly. Note that the equations

for vertices v5 and v6 reflect the fact that there is a state on edges e76 and

e65:

X2(k) = u,(k)

3(k) = X2(k)* (10)

x6 (k) = w x2(k) + x7 (k - 1)

X7(k) = w2u,(k) + u8(k)

Substituting these equations into the following equations for the outputs

y4 (k) = x3(k)
(11)

Y5(k) = wox 3(k) + zo(k - 1)

we obtain (after substituting for the input sequences, eqs. (8) and (9)

y4(k) = u(k)
(12)

y5(k) wjoui(k) + w1ul(k - 1) + W2u1 (k - 2).

The last equation y5(k) = o2 0 wju(k - i) is the output of a convolution

system. Thus we have determined the algorithm performed by the network

and the iteration interval for solving a single instance of the problem, 6 = 2.
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In addition, we have seen that the 6 given in the statement of the problem

(6 = 2) was valid for that network; we have also seen that the network, as

given, is not interleaving input data from different sequences.

Reverse Convolution

This array was developed by Kung and Leiserson (1979). We call it a

"reverse" convolution array, because the output sequences are generated at

opposite ends of the array. Figure 13 depicts the array, the graph G, and

a shortest-path tree based on v0. (For simplicity, we do not show the root,

v0, which has two edges: the first one connects v0 to v, with delay 0; the

second one connects v0 to v5 with delay 9.)

The input sequences are zeros at v5 and {u(), u(1), u(2), . } at vertex

v,, and the output sequences are {y(O),y(l),y(2),...} at v8 and, at v4,

{u(-2),u(-1),u(O),u(1),u(2),. .} with u(-2) and u(-1) supposed to be

known (they are called initial conditions). The iteration interval is given

as 4.

This system differs from the forward convolution in three aspects: rever-

sal in inputs and outputs, reversal in the order of the gains wi, and double

iteration interval. The analysis proceeds as for the forward convolution:

the graph G* has all the weights zero except for s67 = s78 = 1. In addition,
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6, gcd{} = 4 so the system has a valid 6 and none of the input sequences

is interleaved. The system equations are given below

X2(k) = u I (k)

Sx 3(k) = 2(k)

xe(k) =W2X 3(k) + us(k)

X7(k) = X2(k) + xo(k - 1)

Substituting these equations into the following equations for tohe outputs

Y4(k) =x3(k)

y8(k) = woui(k) + X7(k - 1)

we obtain (after substituting for the input sequences)

y4(k) = u1(k)

y8(k) = wout(k) + wu 1(k - 1) + w2u,(k - 2)

The last equation y8(k) E3 0 wul(k - i) is the output of a convolution

system and it is the same equation that we obtained for the forward con-

volution.

Sorting

This array was developed by tt.T. Kung and first reported and verified by

Melhem and Rheinboldt (1984). The system sorts a sequence of n real num-
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bers, ul = {ul(I), u,(2),. .. u,(k)} by using the linear array of n-I proces-

sors depicted in Figure 14. The output sequence, Y8 = (y,(1), yj(2),..., yj(k)

is sorted in ascending order. In this example, we assume all the computa-

tional delays to be equal and of value 10 since all the operations are well

balanced and should take the same amount of time. The iteration interval

given is 20. We have only one source, so we take it directly as the root with

A, = 0. Figure 14(c) and (d) show the graph and the shortest-path tree (in

this case is unique). From it we can readily write the equations

X2 (k) = max{u1 (k), 7(k - 1)}

X3(k) = ma({X2(k),xe(k - 1)}

X 4(k) =max~x3 (k), z 5(k-1)

x5(k) = X4(k)

x6(k) =min.{x,3 (k), x5(k - 1))

X7(k) = min{X2 (k), xa(k - 1)}

Y8 (k) =min{ui(k), X7 (k - 1))

which can be rearranged as follows, after substituting x5(k) x4(k)

.,
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Figure 14: Sorting array: (a) system, (b) processors' functions, (c) graph G,

and (d) the shortest-path tree.
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X2(k) = max{ui(k),X 7(k - 1)}

y8(k) = min{ui(k), 7(k - 1)}

x3 (k) = max{C2 (k), x(k - 1)}

x7 (k) = min{x2(k), X6 (k - 1)}

x4(k) = max{X3(k), X4 (k - 1)}

x6(k) = min{x 3(k), x4 (k - 1)}

These equations correspond to the so-called bubble sort (see Knuth,

1973). Other types of sorting algorithms could be implemented, see, for

instance Rao (1985) and Lang et al. (1985).

Back Substitution

This array was developed by Kung and Leiserson (1979) and also verified

by Melhem and Rheinboldt (1984). Figure 15 depicts the system, the pro-

cessors' functions, the graph G, and a shortest-path tree. This time, we

have associated a computational delay of 10 for each of the edges in the

graph G; this choice corresponds to the usual one for systolic arrays: all

the outputs to a cell are produced at the same time even if some of the

outputs may take less time to compute.

The input sequences are as follows: zeros at vertex ve, the elements
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of a column vector, b, at vertex v1 , and the diagonals of a banded, lower-

triangular matrix, A at vertices v2-v, (the main diagonal at v2 , the first

subdiagonal at v3 , and so on). The input sequences are as follows:

ul= {b,b 2, b3 ,...

U2 = {all, a22 , a3 3 ....

u= {a 2,, a32, a 43 ,...}

U4 {a3 , a42, a53, ...}

us = {a 4 ,a52,a 63,...}

We are also given the times, A, at which the first input is entered; they

are as follows

A,=A 2 =30, A3=40, A4=50, A=60, Ae =0.

These times correspond to the weights in the edges connecting the root
(not shown) and the input vertices.

The output is at vertex v13; we can write it as

Y3= {y(l),y(2),y(3)...

Figure 15(d) shows the states in addition to the shortest path. We

computed them using , = gcd{20, 40,60} = 20. From this figure we can

write the following equations
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-- Figure 15: Back substitution array: (a) system, (b) processors' functions,
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X7(k) = X12 (k - 3) - us(k - 3) + ue(k)

x s(k) = x11(k - 2).-( -2) .+ X7(k)

x9(k) = xio(k -1) -u3 (k - 1) + s(k)

x1o(k) =(ul(k) - xg(k))/U 2(k)

.1*XIL(k) = zi(k)

X12(k) =x 11(k)

Y13(k) =X 12(k)

Substituting these equations we get

Y13(k) = (ul(k) - xg(k))/U2 (k)

where

.5k ~ ) -u( ) ~ ) - 4 k -2 ~ k -3 5 k -3 e k

Substituting now into the input and output sequences we obtain

y13(k) =(bk xg(k))/akk

where

zg~) y~ -1) -ak..1+yk 2) -akk-2+ y(k - 3) .ak,k-3
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These equations are the well known method of solving a triangular system,

called back substitution. Therefore, the array discussed performs back

substitution.

QR factorization

Our last example is the Heller-Ipsen (1983) array for QR factorization of

a banded matrix. A more general study of such arrays can be found in

Schreiber (1983). The Heller-Ipsen array has been verified by Tid~n (1984)

using a novel approach: he shows that the system works with one module

('size' of the system = 1); then he applies induction to the size of the array,

assuming that it works for size n, and proves that it works for size n + 1.

Figure 16 depicts the array and the inputs for the matrix A; the numbers

indicate the subindex for the elements of this matrix. Figure 17 shows the

naming convention and the coordinate axis for the variables, and gives the

graph G* for a row of processors. Note the variations of the graph at the

boundaries and in some of the weights in the subdiagonal cell.

All the computational delays are one unit of time. The iteration interval

is given as 2, which is valid because 61 = gcd{O,2,4} = 2. With the

information in Figure 17 we can write directly the equations for the system.

Note that the first two coordinates indicate position and the third one time.
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Figure 16: 1R factorization array (as given in Tid0n, 1984).
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We write below the regular iterative algorithm for a system with an input

matrix A that has N subdiagonals, a main diagonal, and N superdiagonals.

Initialization: y(i1 Ik)

- ak,k+i-N-1, i> N +I
0

For j= 1,2,... N

,(1, j, k)
R(2,j,k) = (z 2 (1,j,k) + y2(lj,k))'/ 2  '

y(1,j, k)

, y(1,j + 1,k) = (z 2(1,j,k) + y2(1,j,k))/ 2

For i=2,3,... 2N+1

.- 0 V4 R(i + 1,, k) = R(i,j, k)
4,1 a -

x(2N + 1,j,k)= 0

, ,i 0 1 jk
y, (.i,j, k- y(i, j, k)),(ij, k - 1), i 2

x(i- 1,j,k)=
.. :. .o(x(i,j,k - 1) y(i,j,k))R(i,j,k - 2), i > 2

*, i- "{

.... +1k).J'(y(i,j, k) - z(i,j,k))R(i,j, k - 1), i =2

(y(i,j, k) - x(i,j, k - 1))R(i,j, k - 2), i > 2

* o

These equations correspond to the QR factorization of a banded matrix,

which completes our example.
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